Search This Blog

Monday, October 22, 2012

Exception Driven "Debugging": Getting behind anti debugging tricks.

Of course, every debugging is exception driven. At least because a breakpoint generates debug exception wich is passed to debugger. In this article, however, I will refer to regular exceptions.

There are tens if not hundreds of software protectors used by software vendors around the globe. Some are good, some are less good, in either case, vendors rarely use them in a proper way, thinking that simply enabling anti-debugging features, provided by protector of their choice, is enough. I have seen it myself - a widely known commercial application, protected using Themida (which is one of the most complicated protectors) remains SOOO unprotected, that Themida is not even notices during the extraction of relatively sensitive information using the application itself.

However, the purpose of this article is not to discuss pros and cons of Themida or any other protector, nor do I have any intention to disgrace any of the software vendors. The purpose is to describe a relatively easy way of bypassing common anti debugging tricks (including Windows DRM protection)  with DLL injection.

As the term "anti debugging" states - such methods target modern debuggers. There are several commonly known tricks:
  1. IsDebuggerPresent() - you would be surprised to know how many vendors rely on this API alone;
  2. Additional methods of debugger presence detection;
  3. IAT modification - which is not really worth trying;
  4. Redirection of debugging API (e.g. to an infinite loop).
  5. And some more.
Point #4 does not let you to implement your own debugger in a hope that it would not be noticed by the victim program (many beginners fall out at this point).

Point #3 - how much can you modify the IAT? I mean, system loader has to still be able to parse it, thus, if system loader can - everyone can.

Point #1 is not even worth further mentioning here.

In this article I am going to describe a simple way (although, some may cry and say it is a hard way) to get around most of anti debugging tricks without even noticing their presence by implementing a simple pseudo debugger dll, which is to be injected into the target process.


Step #1. Preparations

In order to use any debugger, you have to know where to set your breakpoints. Otherwise, the whole process is meaningless. But how can you define proper locations if the executable on disc is encrypted (e.g. with Themida) and you still cannot attach a debugger to see what is going on inside?

The solution is quite simple. Simple in deed. Windows provides us with all the instruments to read the memory of another process (given that you have sufficient access rights) with OpenProcess(), ReadProcessMemory() and NtQueryInformationProcess() API functions. Using those, you can simply dump the decrypted executable and any of its modules (DLLs) to a separate file on disc.

NtQueryInformationProcess() provides you with the address of the PEB (see this post for more information on PEB) of the target process. Then you simply parse the linked list of loaded modules, get the base address (module handle) and the image size for each, then use ReadProcessMemory to copy the image to a file. One complication, though, you will have to use ReadProcessMemory in order to access the PEB of the remote process.

Once you have dumped the target image to a file, such file can be easily loaded into IDA Pro, disassembled and researched statically.


Step #2. Injector and DLL

I do not see any reason to describe the DLL injection process here, as it has been described many times, even in this blog. You are free to use standard injection method, advanced DLL injection method or use this method if you have problems with the two previously mentioned.


DllMain()

It is suggested not to perform any heavy action in this function, however, we do not really have a choice (although, you can launch a separate thread). First thing to do is to suspend all running threads (except the current one of course). The problem is that Windows has no API function that would allow you to enumerate threads of a single process, instead, it lets you go through all the threads in the system. See MSDN pages for Thread32First and Thread32Next - there should be a perfect example of getting threads of the current process. Once all the threads are suspended, you are ready to proceed.


Installation of breakpoints 

No, we are not going to use regular 0xCC software breakpoints, neither are we going to make any use of hardware breakpoints here. Instead, we are going to place an instruction that would raise an exception to the location of desired breakpoint. To keep such instruction short and to avoid changing the values of the registers, 'AAM 0' seems to be a perfect candidate. It only takes two bytes 0xD4 0x00 and raises the EXCEPTION_INT_DIVIDE_BY_ZERO exception (exception code 0xC0000094).

Use the VirtualProtect() function to change the access rights of the target address, so you can alter its content, backup the original two bytes from that address and overwrite them with 0x00D4

VirtualProtect((LPVOID)(target & ~0xFFF), 0x1000, PAGE_EXECUTE_READWRITE, (PDWORD)&prevProtect);
*((unsigned short*)target) = 0x00D4;
VirtualProtect((LPVOID)(target & ~0xFFF), 0x1000, prevProtect, (PDWORD)&prevProtect);

Now the victim process is almost ready to be continued. One thing left - exception handler. We will use vectored exception handling mechanism as it allows our handler to be (at least among) the first to handle an exception. Once the handler has been added with AddVectoredExceptionHandler(), you may resume the suspended threads of the process.



Handler

One important thing to do once your handler gets control, is to check for the address where the exception occurred and for the exception code, as we have no intention to deal with irrelevant exceptions:

LONG CALLBACK handler(PEXCEPTION_POINTERS ep)
{
   if(ep->ContextRecord->Eip == target && ep->ExceptionRecord->ExceptionCode == 0xC0000094)
   {
      // Do your stuff here
   }
   else
      // Optionally log other exceptions
      return EXCEPTION_CONTINUE_SEARCH;
   return EXCEPTION_CONTINUE_EXECUTION;
}


Your Stuff

One of the parameters you get with your handler is the pointer to the CONTEXT structure, which provides you with the content of all the registers at the time of the exception. Needless to mention, that you have the access to the process' memory as well. Just as you were in a debugger with the only difference - you have to implement the routine that would show you the data you are interested in. Do not forget to emulate the original instruction replaced by the pseudo breakpoint and advance the Eip accordingly before returning from handler.

One more thing to mention - it may be a good idea to suspend all other threads of the victim process while in the 'your stuff' portion of the handler.


Stability

I am not claiming this method to be bullet proof and I am more than sure ( I simply know) - there are ways to defeat it, however, personally, I have not yet met such software. In addition - this method is tested and stable.


Hope this article was helpful. See you at the next.

P.S. Lazy guys, nerds, etc., do not cry for sources. This method is really simple. Besides, if copy/paste is the only programming technique you are aware of, then, probably, this blog is not the right place for you.

Friday, August 31, 2012

Emulation of Hardware. CPU & Memory

There are tens of hardware platforms (although, some people would say that there is only one - computer ;-) ). Each one has its own advantages over others and disadvantages as well. For example Intel is the most used platform for desktops, ARM and MIPS are widely used in embedded systems and so on. Sometimes, a need may arise to test/debug executable code written for platform other then the one you have access to. For example, what if you have to run ARM code while using Intel based desktop? In most cases, this is not a problem at all due to a large amount of available platform emulators (e.g. QEMU and many others). However, even though QEMU is quite a powerful tool, there are certain cases when it is not helpful (at least not without certain modifications).

Note for nerds:
Yes, there are such cases - if you have not seen one, does not mean they do not exist. 
The code in this article is for demonstration purposes only - checks for errors may be omitted. It may be unoptimized.
Yes, there may be better ways.

Either forced by current needs or just for fun, you may want to write your own emulator for any existing (or not existing) platform. You may check this article to see how a simplistic CPU may be designed and implemented. However, CPU is only a tiny (although, important) part of your emulator. There are many other things that you would have to take care of, such as memory, IO devices, etc. Of course, the complexity of the implementation depends on how isolated you want your emulator to be. 

As you may understand from the title of this article, we are going to concentrate on the CPU to Memory (RAM) interface. It may be a good idea to define how much memory should your emulator support (define the width of the address line) in advance. For example, if you are going to support at most 64 kB, then 16 bit addressing mode would be enough. In such case, you may simply allocate a continuous memory area and access it directly. However, what if you plan to support 1 or 2 or even more gigabytes? Although, it would not necessarily be used at once, but your architecture may imply this. You definitely would not want to make such a huge allocation. Especially not if the software you are planning to run uses a tiny bit of memory in lower address space, a tiny bit in the upper and itself is loaded somewhere in the middle. If this is the situation, then you should implement a kind of a paging mechanism, which would only allocate pages for addresses which are actually being used.


Paging

Let's make some definitions to deal with pages:

#define PAGE_SIZE 0x1000 // You may choose to use other size
#define PAFE_MASK 0x0FFF // This depends on the value of PAGE_SIZE

typedef struct _page_t
{
   struct _page_t*   previous, next;
   unsigned long     base;  // Address in the emulated memory represented by this page
   unsigned int      flags; //Whatever flags you want your pages to have
   unsigned char*    mem;   // Pointer to the actual allocated memory
}page_t;

The mechanism is quite similar to the actual paging mechanism used today, except that you do not have to use page tables as most of the time a simple linked list of pages is enough and that you are not mapping virtual memory to physical, but mapping emulated memory to the virtual memory which is accessible for the emulator.

previous and next - pointers to other page_t structures in the linked list of pages;
base - lower address of the emulated memory represented by this page;
flags - any attributes you would like your pages to have (e.g. is it writable or executable, etc.);
mem - pointer to the memory area actually allocated by the emulator.

Using such mechanism will reduce the overall memory usage as you would have to allocate only those memory areas used by the software you are running on your emulator.


Page Management

It is, of course, up to you how to manage this kind of paging, but, as it seems to me, it may be a good idea to implement a set of functions to manage the sorted (by base) linked list of pages:

page_t* memory_page_alloc(void);

This function would simply return a pointer to an allocated page_t structure. Don't forget to allocate real memory area of PAGE_SIZE and store a pointed to it in page_t->mem

void  memory_page_release(page_t** pg);

This function releases all the resources allocated for a page. This includes the memory which actually represents the page and is pointed to by page_t->mem and the page_t structure itself.

int  memory_page_add(page_t** page_list, unsigned long base);

This function is responsible for allocation of a new page, which would represent memory starting at base and its insertion into the sorted linked list of pages.
*page_list - pointer to the first page in the linked list of pages;
base - beginning address of the emulated memory of size PAGE_SIZE.
Its return value should tell you whether a page has been added or an error occurred during memory allocations.


Memory Access Emulation

Due to the fact that we are not talking about one consistent array, but rather several separated memory areas (from the emulator's point of view) it makes sense to write a couple of functions that would perform read/write operations from/to the emulated memory.

int memory_read_byte(page_t* pg_list, unsigned long address, unsigned char* byte);

This function is responsible for reading a single byte from the emulated memory pointed by address. The read byte is returned into location pointed by byte. It walks the linked list of pages looking for a page where page_t->base <= address && (page_t->base + PAGE_SIZE) > address. If there is no such page, then it either allocates and adds it to the list of pages, then performs the read operation or simply returns error (this may be helpful in order to emulate memory access violations). It is up to you to define the behavior of this function in such situation. In fact, you may define an internal flag to enable/disable automatic page allocations.

int memory_write_byte(page_t* pg_list, unsigned long address, unsigned char byte);

This function is almost identical to the one above, except that it writes a single byte to the emulated memory. Its behavior should be the same as memory_read_byte.


It is definitely not that good to only be able to transfer one byte at a time, so you are more then welcome to implement functions for larger transfers. However, you will need to be careful in those cases when such transfer involves two pages and check that both pages are allocated (meaning accessible).


Of course, there are many more things to emulate like IO devices, possibly network adapters, but memory is the most important. But this goes far beyond the scope of this article.

Hope this article was informative. See you at the next.




Wednesday, May 30, 2012

CreateRemoteThread. Bypass Windows 7 Session Separation

Internet is full of programmers' forums and those forums are full with questions about CreateRemoteThread Windows API function not working on Windows 7 (when trying to inject a DLL). Those posts made by lucky people, somehow, redirect you to the MSDN page dedicated to this API, which says: "Terminal Services isolates each terminal session by design. Therefore, CreateRemoteThread fails if the target process is in a different session than the calling process." and, basically, means - start the process from your injector as suspended, inject your DLL and then resume the process' main thread. This works... Most of the time... But sometimes you really need to inject your code into a running process. Isn't there a way to do that? Well, there is. As a matter of fact, it is so easy, that I decided not to attach my source code to this article (mainly, because I am too lazy to make it look readable :) ). It appears to be that I am not the only one lazy here :), so I have uploaded the source code.

Let me start as usual, with a note for nerds in order to avoid meaningless comments and stupid discussions. 
The code provided within the article is for example purposes only. Error checks have been omitted on purpose. Yes, there may be another, probably even better, way of doing this. No, manual DLL mapping is not better unless you have plenty of time and nothing to do with it.

All others, let's get to business :)


Opening the Victim Process

This is the easiest part. At this stage you will see whether you are able to inject your code or not (in case of a system process, for example). Nothing unusual here - you simply invoke the good old OpenProcess API

HANDLE WINAPI OpenProcess(
       DWORD dwDesiredAccess, /* in our case PROCESS_ALL_ACCESS */
       BOOL  bInheritHandle, /* no need, so FALSE */
       DWORD dwProcessId /* self explanatory enough */
);

which opens the process specified by dwProcessId and returns a handle to that process, unless, you have no sufficient rights to access that process.


Reading the Shellcode

What you usually see in the examples of shellcode over the internet, is an unsigned char array of hexadecimal values somewhere in the C code. Helps to keep the amount of files smaller, but is not really comfortable to deal with. I decided to store the shellcode in a separate binary file, produced with FASM (Flat Assembler):

use32
   ; offset of the LoadLibraryA address within the shellcode
   dd    func
   ; save all registers
   push  eax ebx ecx edx ebp edi esi
   ; get your EIP
   call  next
next:
   pop   eax
   mov   ebx, eax
   ; get the address of the DLL name
   mov   eax, string - next
   ; do this to avoid possible negative values (due to sign extend)
   movzx eax, al
   add   eax, ebx
   ; pass it to the LoadLibraryA API
   push  eax
   ; get the address of the LoadLibraryA function
   mov   eax, func - next
   movzx eax, al
   add   eax, ebx
   mov   eax, [eax]
   ; call LoadLibraryA
   call  eax
   ; restore registers
   pop   esi edi ebp edx ecx ebx eax
   ; return
   ret
func     dd 0x12345678 ; placeholder for the address
string:

Compiling this code with FASM.EXE will produce a raw binary file, where all offsets are 0 - based. There are some parts in the code above, that may require some additional explanation (for example, why does it not end with ExitThread()). I am aware of this and I will provide you with the explanation a little bit later.

For now, allocate an unsigned char buffer for your shellcode. Make this buffer large enough to contain the shellcode and the name of the DLL (my assumption is, that you passed that name as a command line parameter to your injector). with it's terminating zero.

Once you have read the shellcode into that buffer - append the name of the DLL (which may be a full path to the DLL) to the end of the shellcode with, for example, memcpy() function. Half done with it. Now we still have to "tell" the shellcode where the LoadLibraryA API function is located in memory. Fortunately, the load address randomization in Windows is far from being perfect (addresses  of loaded modules may vary between subsequent reboots, but are the same for all processes). This means that, just as in usual DLL injection, we obtain the address of this API in our process by calling good old GetProcAddress(GetModuleHandleA("kernel32.dll"), "LoadLibraryA") and save it to the "func" variable of the shellcode. Due to the fact that our shellcode may vary in size from time to time (that depends on the needs), we saved the offset to that variable in the first four bytes of the shellcode, which eliminates the need to hardcode the offset. Simply do the following:

*(unsigned int*)(shellcode_ptr + *(int*)(shellcode_ptr)) = (unsigned int)LoadLibraryA_address;

Our shellcode is ready now.


"Create remote thread" without CreateRemoteThread()

As the title of this paragraph suggests - we are not going to use the CreateRemoteThread(). In fact, we are not going to create any thread in the victim process (well, the injected DLL may, but the shellcode won't).


Code Injection

Surely, we need to move our shellcode into the victim process' address space in order to load or library. We are doing it in the same manner, as we would copy the name of the DLL in regular DLL injection procedure:
  1. Allocate memory in the remote process with
    LPVOID WINAPI VirtualAllocEx(
       HANDLE hProcess, /* the handle we obtained with OpenProcess */
       LPVOID lpAddress, /* preferred address; may be NULL */
       SIZE_T dwSize, /* size of the allocation in bytes */
       DWORD  flAllocationType, /* MEM_COMMIT */
       DWORD  flProtect /* PAGE_EXECUTE_READWRITE */
    );
    This function returns the address of the allocation in the address space of the victim process or NULL if it fails.
  2. Copy the shellcode into the buffer we've just allocated in the address space of the victim process:
    BOOL WINAPI WriteProcessMemory(
       HANDLE   hProcess, /* same handle as above */
       LPVOID   lpBaseAddress, /* address of the allocation */
       LPCVOID  lpBuffer, /* address of the local buffer with the shellcode */
       SIZE_T   nSize, /* size of the shellcode together with the appended                                 NULL-terminated string */
  3.    SIZE_T   *lpNumberOfBytesWritten /* if this is zero - check your code */
    );
    If the return value of this function is non zero - we have successfully copied our shellcode into the victim process' address space. It may also be a good idea to check the value returned in the lpNumberOfBytesWritten.

Make It Run
So, we have copied our shell code. The only thing left, is to make it run, but we cannot use the CreateRemoteThread() API... Solution is a bit more complicated.

First of all, we have to suspend all threads of the victim process. In general, suspending only one thread is enough, but, as we cannot know for sure what is going on there, we should suspend them all. There is no specific API that would provide us with the list of threads for a specified process, instead, we have to create a snapshot with CreateToolhelp32Snapshot, which provides us with the list of all currently running threads of all processes running in the system:

HANDLE WINAPI CreateToolhelp32Snapshot(
   DWORD dwFlags, /* TH32CS_SNAPTHREAD = 0x00000004 */
   DWORD th32ProcessID /* in this case may be 0 */
);

This function returns the handle to the snapshot, which contains information on all present threads. Once we have this, we "iterate through the list" with Thread32First and Thread32Next API functions:

BOOL WINAPI Thread32First(
   HANDLE hSnapshot, /* the handle to the snapshot */
   LPTHREADENTRY32 lpte /* pointer to the THREADENTRY32 structure */
);

The Thread32Next has the same prototype as Thread32First.

typedef struct tagTHREADENTRY32{
   DWORD dwSize; /* size of this struct; you have to initialize this field before use */
   DWORD cntUsage; 
   DWORD th32ThreadID; /* use this value to open thread for suspension */
   DWORD th32OwnerProcessID; /* compare this value against the PID of the victim 
                              to filter out threads of other processes */
   LONG  tpBasePri;
   LONG  tpDeltaPri;
   DWORD dwFlags;
} THREADENTRY32, *PTHREADENTRY32;

For each THREADENTRY32 with matching th32OwnerProcessID, open it with OpenThread() and suspend with SuspendThread:

HANDLE WINAPI OpenThread(
   DWORD dwDesiredAccess, /* THREAD_ALL_ACCESS */
   BOOL  bInheritHandle, /* FALSE */
   DWORD dwThreadId /* th32ThreadID field of THREADENTRY32 structure */
);

and

DWORD WINAPI SuspendThread(
   HANDLE hThread, /* Obtained by OpenThread() */
);

Don't forget to CloseHandle(openedThread) :)

Take the first thread, once it is opened (actually, you can do that with any thread that belongs to the victim process) and suspended, and get its CONTEXT (see "Community Additions" here) using the GetThreadContext API:

BOOL WINAPI GetThreadContext(
   HANDLE    hThread, /* handle to the thread */
   LPCONTEXT lpContext /* pointer to the CONTEXT structure */
);

Now, when all the threads of the victim process are suspended, we are may do our job. The idea is to redirect the execution flow of this thread to our shellcode, but make it in such a way, that the shellcode would return to where the suspended thread currently is. This is not a problem at all, as we have the CONTEXT of the thread. The following code does that just fine:

/* "push" current EIP of the thread onto its stack, so that the ret instruction in the shellcode returns the execution flow to this address (which is somewhere in WaitForSingleObject for suspended threads) */
ctx.Esp -= sizeof(unsigned int);
WriteProcessMemory(victimProcessHandle, 
                   (LPVOID)ctx.Esp, 
                   (LPCVOID)&ctx.Eip,
                   sizeof(unsigned int),
                   &bytesWritten);
/* Set the EIP to our injected shellcode; do not forget to skip the first four bytes */
ctx.Eip = remoteAddress + sizeof(unsigned int);

Almost there. All we have to do now, is resume the previously suspended threads in the same manner (iterating with Thread32First and Thread32Next with the same snapshot handle).

Don't forget to close the victim process' handle with CloseHandle() ;)


Shellcode

After all this, the execution flow in the selected thread of the victim process reaches our shellcode, which source code should be pretty clear now. It simply calls the LoadLibraryA() API function with the name/path of the DLL we want to inject.

One important note - it is a bad practice to do anything "serious" inside the DllMain() function. My suggestion is - create a new thread in DllMain() and do all the job there, so that it may return safely.

Hope this article was helpful.

Have fun injecting and see you at the next.




Wednesday, May 23, 2012

Passing Events to a Virtual Machine

The source code for this article may be found here.

Virtual machines and Software Frameworks are an initial part of our digital life. There are complex VM and simple Software Frameworks. These two articles (Simple Virtual Machine and Simple Runtime Framework by Example) show how easy it may be to implement one yourself. I did my best to describe the way VM code may interact with native code and the Operating System, however, the backwards interaction is still left unexplained. This article is going to fix this omission.

As usual - note for nerds:
The source code given in this article is for example purposes only. I know that this framework is far from being perfect, therefore, this article is not a howto or tutorial - just an explanation of principle. Error checks are omitted on purpose. You want to implement a real framework - do it yourself, including error checks.
By saying VM's code I do not refer to the implementation of the virtual machine, but to the pseudo code that runs inside it.


Architecture Overview
Needless to mention, that the ability to pass events/signals to a code executed by the virtual machine implies a more complex VM architecture. While all previous examples were based on a single function responsible for the execution, adding events means not only adding another function, but we will have to introduce threads to our implementation.

At least two threads are needed:
Fig.1
VM Architecture with Event Listener

  1. Actual VM - this thread is responsible for the execution of the VM's executable code and events queue dispatch (processor);
  2. Event Listener - this thread is responsible for collection of relevant events from the Operating Systems and adding them to the VM's event queue (listener).
You may see that the Core() function, in the attached source code, creates additional thread.







Event ListenerThis thread collects events from the Operating System (mouse move, key up/down, etc) and adds a new entry to the list of EVENT structures.

typedef struct _EVENT
{
   struct _EVENT* next_event; // Pointer to the next event in the queue
   int            code;       // Code of the event
   unsigned int   data;       // Either unsigned int data or the address of the buffer
                              // containing information to be passed to the handler
}EVENT;

The code for the listener is quite simple:

while(WAIT_TIMEOUT == WaitForSingleObject(processor_thread, 1))
{
   // Check for events from the OS
   if(event_present)
   {
      EnterCriticalSection(&cs);
      event = (EVENT*)malloc(sizeof(EVENT));
      event->code = whatever_code_is_needed;
      event->data = whatever_data_is_relevant;
      add_event(event_list, event);
      event->next_event = NULL;
      LeaveCriticalSection(&cs);
   }
}

The code is self explanatory enough.  First of all it checks for available events (this part is omitted and replaced by a comment). If there is a new event to pass to the VM, it adds it to the queue. While in this example, event collection is implemented as a loop, in real life, you may do it in a form of callbacks and use the loop above just to wait for the processor thread to exit.


Processor

Obviously, the "processor" thread is going to be a bit more complicated, then in the previous article (
Simple Runtime Framework by Example), as in addition to running the run_opcode(CPU**) function, it has to check for pending events and pass the control flow to the associated handler in the VM code.

typedef struct _EVENT_HANDLER
{
   struct _EVENT_HANDLER* next_handler; // Pointer to the next handler
   int                    event_code;   // Code of the event
   unsigned int           handler_base; // Address of the handler in the VM's code
}EVENT_HANDLER;

DWORD WINAPI RunningThread(void* param)
{
   CPU*            cpu = (CPU*)param;
   EVENT*          event;
   EVENT_HANDLER*  handler;

   do{
      EnterCriticalSection(&cs);
      if(NULL != events)
      {
         event = events;
         events = events->next_event;

         // Save current context by pushing VM registers to VM's stack
         
         cpu->regs[REG_A] = (unsigned int)event->code;
         cpu->regs[REG_B] = event->data;

         handler = handlers;
         while(NULL != handler && event->code != handler->event_code)
               handler = handler->next_handler;
         
         cpu->regs[REG_IP] = handler->handler_base;

         free(event);
      }
      LeaveCriticalSection(&cs);

   }while(0 != run_opcode(&cpu));
   return cpu->regs[REG_A];
}

We are almost done. Our framework already knows how to pass events to a correct handler in the VM's code. Two more things are yet uncovered - registering a handler and returning from a handler.


Returning from Handler

Due to the fact that Event Handler is not a regular routine, we cannot return from it using the regular
RET instruction, instead, let's introduce another instruction - IRET. As event actually interrupts the execution flow of the program, IRET - interrupt return is exactly what we need. The source code that handles this instruction is so simple, that there is no need to give it here in the text of the article. All it does is simply restoring the context of the VM's code by popping the registers previously pushed on stack.


Registering an Event Handler

The last thing left is to "teach" the program written in pseudo assembly to register a handler for a given event type. In order to do this, we need to add one simple system call -
SYS_ADD_LISTENER.  This system call accepts two parameters:
  1. Code of the event to handle;
  2. Address of the handler function.
loadi  A, 0             ;Code of the event
loadi  B, handler       ;Address of the handler subroutine
_int   sys_add_listener ;Register the handler


Example Code

The example code attached to this article is the implementation of all of the above. It does the following:
  1. Registers event handler;
  2. Enters an infinite loop printing out '.' every several milliseconds;
  3. The first thread waits a bit and generates an event;
  4. Event handler terminates the infinite loop and returns;
  5. The program prints out a message and exits.


I hope this post was helpful or, at least, interesting.

See you at the next.






Saturday, May 19, 2012

Simple Runtime Framework by Example

Source code for this article may be found here.

These days we are simply surrounded by different software frameworks. Just to name a few: Java, .Net and, actually, many more. Have you ever wondered how those work or have you ever wanted or needed to implement one? In this article, I will cover a simple or even trivial runtime framework.

As usual - note for nerds:
The source code given in this article is for example purposes only. I know that this framework is far from being perfect, therefore, this article is not a howto or tutorial - just an explanation of principle. Error checks are omitted on purpose. You want to implement a real framework - do it yourself, including error checks.

Now, to let's get to business.

Software Framework
Wikipedia gives the following identification for the term "Software Framework" - "A software framework is a universal, reusable software platform used to develop applications, products and solutions. Software Frameworks include support programs, compilers, code libraries, an application programming interface (API) and tool sets that bring together all the different components to enable development of a project or solution". As you can see, software framework is quite a complex thing. However, let's simplify it and see how it basically work.

Figure 1.
Software Framework
The diagram on the left may give you a good understanding of what Software Framework is and what role it performs. Simply saying, it is a shim between the user application and the Operating System. There are at least two types of Software Frameworks:

  1. Application Programming Interface (API) - if we take a look at Windows API, we may see that it is a framework as well. However, it may be bypassed or, at least, a programmer may choose to decrease the interaction with it by, for example, using functions from ntdll.dll instead of those provided by kernel32.dll or even "talk" to Windows kernel directly (highly not recommended, but may be unavoidable some times) through interrupts.
  2. .Net like framework - total isolation of user code from the operating system. Such frameworks are mostly virtual machines totally isolating user application from the operating system and hardware. However, such framework has to provide the application with all the services available in the Operating System. This is type of framework we are going to build in this article.




Virtual Machine
The basics of building a simple virtual machine is covered in this article, so I will only give a brief explanation here. Our VM in this example will consist of the following components:
  1. Virtual CPU
    A structure that represents a CPU - basically, has 6 registers and a pointer to the stack:

    typedef struct
    {
       unsigned int  regs[6];
       unsigned int* stack;
    }CPU;

    The 6 registers are general purpose
    A, B, C and D, where A is also used to store system call return value and C is used as a counter for LOOP instruction, STACK POINTER (SP) and INSTRUCTION POINTER (IP).
  2. Instruction Interpreter
    A function or a set of functions which responsible for interpretation of the pseudo assembly (or call it intermediate assembly language) designed for this virtual machine (in this case 14 instructions).
  3. System Call Handler
    This component provides the means for the user application to interact with the Operating System (in this case 2 system calls:
    sys_write and sys_exit).

Core Function
The name of the function speaks for itself. This is the first function of the framework implementation which gains control. In this particular case, it does not have too many things to do - initialization of the virtual CPU and execution of the command interpreter, until the user application exits (signals the framework to terminate the execution).

Implementation
It is a common practice to implement a framework as a DLL (dynamic link library), for example, mscoree.dll - the core of the .Net framework. I do not see any reason to reinvent the wheel, therefore, this framework will be implemented as a DLL as well.

All is fine, you may say, but how should we pass the compiled pseudo assembly code to the framework? Well, I bet, most of you know how to do that. In case you don't - no worries, just keep reading.

In case of .Net framework (at least as far as I know), the loader identifies a file as a .Net executable, reads in the meta header, and initializes the mscoree.dll appropriately. We will not go through all those complications and will use a regular PE file:


Figure 2.
Customized PE file.

  • PE Header - regular PE Header, no modification needed;
  • Code Section - simply invokes the core function of the framework:

    push pseudo_code_base_address
    call [core]
  • Import Section - regular import section that only imports one function from the framework.dll - framework.core(unsigned int);
  • Data Section - this section contains the actual compiled pseudo assembly code and whatever headers you may come up with, that may instruct the core() function to correctly initialize the application.






Example Executable Source Code
The following is the source code of the example executable. It may be compiled with FASM (Flat Assembler).

include 'win32a.asm' ;we need the 'import' macro
include 'asm.asm'    ;pseudo assembly commands and constants

format PE console
entry start

section '.text' readable executable
start:
   push _base
   call [core_func]

section '.idata' data import writeable
library  framework, 'framework.dll'

import framework,\
   core_func, 'Core'

section '.data' readable writeable
_base:
   loadi A, _base
   loadi B, 0x31
   _add A, B
   loadr B, A
   loadi A, _data.string
   loadi C, _data.string_len
   _call _func
   loadi A, 1
   loadi B, _data.string
   loadi C, _data.str_len
   _int sys_write
   loadi A, 1
   loadi B, _data.msg
   loadi C, _data.msg_len
   _int sys_write
   _int sys_exit


_func:
   ; A = string address
   ; B = key
   ; C = counter
.decode:
   loadr D, A
   xorr D, B
   storr A, D
   loadi D, 4
   _add A, D
   _loop .decode
   _ret



_data:
.string db 'Hello, developer!', 10, 13
.str_len = $-.string
db 0
.string_len = ($-.string)/4
.msg db 'The program will now exit.', 10, 13
.msg_len = $-.msg

;Encrypt one string
load k dword from _base + 0x31
repeat 5
load a dword from _data.string + (% - 1) * 4
a = a xor k
store dword a at _data.string + (% - 1) * 4
end repeat



The code above produces a tiny executable which invokes framework's core() function. Pseudo assembly code simply prints two messages (the first one is decoded prior to being printed). Full sources are attached to this article (see the very first line).

The good thing is that you do not have to start the interpreter and load this executable (or specify it as a command line parameter) - you may simply run this executable, Windows loader will bind it with the framework.dll automatically. The bad thing is that you would, most probably, have to write your own compiler, because writing assembly is fun, dealing with pseudo assembly is fun as well, BUT, only when done for fun. It is not as pleasant when dealing with production code.


Possible uses
Unless you are trying to create a framework that would overcome existing software frameworks, you may use such approach to increase the protection of your applications by, for example, virtualizing cryptography algorithms or any other part of your program which is not essential by means of execution speed, but represents a sensitive intellectual property.

Hope you find this article helpful.

See you at the next!